Thermodynamic Rarity and the Loss of Mineral Wealth

نویسنده

  • Alicia Valero
چکیده

The second law of thermodynamics and, specifically, exergy analysis have been traditionally used for the assessment and optimization of energy systems. Nevertheless, as shown in this paper, exergy could also constitute a powerful tool for the evaluation of mineral commodities. That said, new or re-defined exergy-based concepts need to be developed. This paper presents Thanatia as a baseline for evaluating the exergy of any mineral in the crust and opens the door to discuss the “thermodynamic rarity” concept as a basis for exergy analyses for mineral systems. Thermodynamic rarity is understood as the amount of exergy needed to obtain a given mineral from a completely degraded state, denoted as Thanatia. The rarer the mineral, the greater the associated exergy costs. It quantifies value, as it relates to concentration, chemical composition and cohesion, key aspects that determine whether a mine is exploitable. The theory further allows one to quantify the gradual loss of mineral capital on Earth as a consequence of “rarefaction processes” that occur at a mineral’s end-of-life, when a commodity is wasted, and at its beginning-of-life, where mining ore grades decline after extraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Study of Water Activity of Single Strong Electrolytes

Today, due to the natural decline of oil exploitation, the use of methods of oil recovery, has made significant progress. However, these methods are accompanied by accumulation and deposition of mineral deposits in oil field installations. In the present study, aqueous solutions, strontium sulfate, barium sulfate, manganese sulfate and nickel sulfate are studied, in terms of EUNIQUAC model and ...

متن کامل

Thermodynamic Modeling and Experimental Studies of Bayerite Precipitation from Aluminate Solution: Temperature and pH Effect

Bayerite is one of the phases of aluminum hydroxide which is precipitated by the carbonation of aluminate solutions obtained from sintered nepheline syenite leaching. In this study, the conditions for the bayerite formation were predicted by thermodynamic modeling of the carbonation process and the Bromley- Zemaitis model was used for this purpose. Carbonation experiments were carried out a...

متن کامل

Static Modeling of Oil Field Mineral Scales: Software Development

Mineral scale deposition in near wellbore regions of injection wells is one of the main challengeable issues during the water injection process, which magnifies the importance of robust models in predicting the amount of mineral scale deposition such as calcium sulfate. One of the main challenges of CaSO4 scale is in carbonated reservoirs, in which sensitive behavior is observed in related to t...

متن کامل

Gastric Inflammatory Fibroid Polyp: Report of a Case

  The gastric inflammatory fibroid polyp (IFP) is a rare benign tumor of unknown etiology that is localized mainly in the antrum and presents endoscopically as submucosal mass. The lesion manifests as abdominal pain, weight loss, bleeding, dyspeptic symptoms, and iron deficiency anemia. We report a case of gastric IFP presented with microcytic anaemia, dyspepsia, malena and weight loss. Endosc...

متن کامل

Bone mineral density loss in postmenopausal onset rheumatoid arthritis is not greater than premenopausal onset disease

  Background: Postmenopausal onset rheumatoid arthritis (post-RA) is expected to have greater bone mineral density (BMD) loss than premenopauasal onset (pre-RA) due to estrogen deficiency and aging. This study aimed to compare the BMD status of the two RA groups with age-matched non-RA controls.   Methods: The patients with RA on follow-up examination were stratified according to age of onset. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015